Generating Equivalent Algebraic Expressions Module Quiz B Answer Key
Learning Outcomes
Key concepts to see how math works. Animated Math Go digital with your write-in student edition, accessible on any device. Scan with your smart phone to jump directly to the online edition, video tutor, and more. MODULE How can you generate equivalent numerical expressions and use them to solve real-world problems? Generating Equivalent Numerical. Grade 6 Mathematics Module 4 Grade 6 Module 4: Expressions and Equations In Module 4, Expressions and Equations, students extend their arithmetic work to include using letters to represent numbers in order to understand that letters are simply 'stand-ins' for numbers and that arithmetic is carried out exactly as it is with numbers.
- Translate word phrases into algebraic expressions
- Write an algebraic expression that represents the relationship between two measurements such as length and width or the amount of different types of coins
This 73 page WORD document is comprised of 104 questions and problems dealing with converting arithmetic and algebraic expressions into equivalent expressions. Of the 104 questions and problems, the first 40 are Multiple Choice questions, followed by 53 Short Answer questions, and then 11 Full Respo. About 'Generating equivalent algebraic expressions' Generating equivalent algebraic expressions: An algebraic expression is a mathematical sentence involving constants (any real number), variables and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). Practice determining whether or not two algebraic expressions are equivalent by manipulating the expressions. These problems require you to combine like terms and apply the distributive property.
Translate Words to Algebraic Expressions
In the previous section, we listed many operation symbols that are used in algebra, and then we translated expressions and equations into word phrases and sentences. Now we’ll reverse the process and translate word phrases into algebraic expressions. The symbols and variables we’ve talked about will help us do that. They are summarized below.
Operation | Phrase | Expression |
---|---|---|
Addition | [latex]a[/latex] plus [latex]b[/latex] the sum of [latex]a[/latex] and [latex]b[/latex] [latex]a[/latex] increased by [latex]b[/latex] [latex]b[/latex] more than [latex]a[/latex] the total of [latex]a[/latex] and [latex]b[/latex] [latex]b[/latex] added to [latex]a[/latex] | [latex]a+b[/latex] |
Subtraction | [latex]a[/latex] minus [latex]b[/latex] the difference of [latex]a[/latex] and [latex]b[/latex] [latex]b[/latex] subtracted from [latex]a[/latex] [latex]a[/latex] decreased by [latex]b[/latex] [latex]b[/latex] less than [latex]a[/latex] | [latex]a-b[/latex] |
Multiplication | [latex]a[/latex] times [latex]b[/latex] the product of [latex]a[/latex] and [latex]b[/latex] | [latex]acdot b[/latex] , [latex]ab[/latex] , [latex]aleft(bright)[/latex] , [latex]left(aright)left(bright)[/latex] |
Division | [latex]a[/latex] divided by [latex]b[/latex] the quotient of [latex]a[/latex] and [latex]b[/latex] the ratio of [latex]a[/latex] and [latex]b[/latex] [latex]b[/latex] divided into [latex]a[/latex] | [latex]adiv b[/latex] , [latex]a/b[/latex] , [latex]frac{a}{b}[/latex] , [latex]boverline{)a}[/latex] |
Look closely at these phrases using the four operations:
- the sum of [latex]a[/latex] and [latex]b[/latex]
- the difference of [latex]a[/latex] and [latex]b[/latex]
- the product of [latex]a[/latex] and [latex]b[/latex]
- the quotient of [latex]a[/latex] and [latex]b[/latex]
Each phrase tells you to operate on two numbers. Look for the words of and and to find the numbers.
example
Translate each word phrase into an algebraic expression:
1. The difference of [latex]20[/latex] and [latex]4[/latex]
2. The quotient of [latex]10x[/latex] and [latex]3[/latex]
Solution
1. The key word is difference, which tells us the operation is subtraction. Look for the words of and and to find the numbers to subtract.
[latex]begin{array}{} text{the difference of }20text{ and }4hfill 20text{ minus }4hfill 20 - 4hfill end{array}[/latex]
2. The key word is quotient, which tells us the operation is division.
[latex]begin{array}{} text{the quotient of }10xtext{ and }3hfill text{divide }10xtext{ by }3hfill 10xdiv 3hfill end{array}[/latex]
This can also be written as [latex]begin{array}{l}10x/3text{ or}frac{10x}{3}hfill end{array}[/latex]
example
Translate each word phrase into an algebraic expression:
- How old will you be in eight years? What age is eight more years than your age now? Did you add [latex]8[/latex] to your present age? Eight more than means eight added to your present age.
- How old were you seven years ago? This is seven years less than your age now. You subtract [latex]7[/latex] from your present age. Seven less than means seven subtracted from your present age.
Solution: Game maker license key generator.
1. Eight more than [latex]y[/latex]
2. Seven less than [latex]9z[/latex]
1. The key words are more than. They tell us the operation is addition. More than means “added to”.
[latex]begin{array}{l}text{Eight more than }y text{Eight added to }y y+8end{array}[/latex]
2. The key words are less than. They tell us the operation is subtraction. Less than means “subtracted from”.
[latex]begin{array}{l}text{Seven less than }9z text{Seven subtracted from }9z 9z - 7end{array}[/latex]
example
Translate each word phrase into an algebraic expression:
1. five times the sum of [latex]m[/latex] and [latex]n[/latex]
2. the sum of five times [latex]m[/latex] and [latex]n[/latex]
Solution
1. There are two operation words: times tells us to multiply and sum tells us to add. Because we are multiplying [latex]5[/latex] times the sum, we need parentheses around the sum of [latex]m[/latex] and [latex]n[/latex].
five times the sum of [latex]m[/latex] and [latex]n[/latex]
[latex]begin{array}{} 5left(m+nright)hfill end{array}[/latex]
2. To take a sum, we look for the words of and and to see what is being added. Here we are taking the sum of five times [latex]m[/latex] and [latex]n[/latex].
the sum of five times [latex]m[/latex] and [latex]n[/latex]
/sims-3-steam-key-generator.html. [latex]begin{array}{} 5m+nhfill end{array}[/latex]
Notice how the use of parentheses changes the result. In part 1, we add first and in part 2, we multiply first.
Watch the video below to better understand how to write algebraic expressions from statements.
Later in this course, we’ll apply our skills in algebra to solving equations. We’ll usually start by translating a word phrase to an algebraic expression. We’ll need to be clear about what the expression will represent. We’ll see how to do this in the next two examples.
example
Generating Equivalent Algebraic Expressions Module Quiz B Answer Key Pdf
The height of a rectangular window is [latex]6[/latex] inches less than the width. Let [latex]w[/latex] represent the width of the window. Write an expression for the height of the window.
Show SolutionSolution
Write a phrase about the height. | [latex]6[/latex] less than the width |
Substitute [latex]w[/latex] for the width. | [latex]6[/latex] less than [latex]w[/latex] |
Rewrite ‘less than’ as ‘subtracted from’. | [latex]6[/latex] subtracted from [latex]w[/latex] |
Translate the phrase into algebra. | [latex]w - 6[/latex] |
example
Blanca has dimes and quarters in her purse. The number of dimes is [latex]2[/latex] less than [latex]5[/latex] times the number of quarters. Let [latex]q[/latex] represent the number of quarters. Write an expression for the number of dimes.
Show SolutionSolution
Write a phrase about the number of dimes. | two less than five times the number of quarters |
Substitute [latex]q[/latex] for the number of quarters. | [latex]2[/latex] less than five times [latex]q[/latex] |
Translate [latex]5[/latex] times [latex]q[/latex] . | [latex]2[/latex] less than [latex]5q[/latex] |
Translate the phrase into algebra. | [latex]5q - 2[/latex] |
Generating Equivalent Algebraic Expressions Module Quiz B Answer Key Pltw
in the following video we show more examples of how to write basic algebraic expressions from words, and simplify.